REFLECTING FUNCTION

V. I. Mironenko
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We assume, that for any point (
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In case the system (1) is 2ω-periodic with respect to 
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 We come from here to the function 
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 This function we call reflecting function (RF). 
Let us to define the RF more accurately. For this reason we fix 
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Definition 1. The function 
[image: image28.wmf])

,

;

(

:

)

,

(

,

:

x

t

t

x

t

F

R

D

F

n

-

=

®

j

 we call reflecting function (RF).
For RF the following properties are true:
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2. For RF 
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3. A differentiable function 
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are valid. The relation (3) we shall call fundamental or basic relation.

Let 1) a solution 
[image: image39.wmf])

(

t

x

 of (1) to be defined at least on 
[image: image40.wmf][0;);

l

 2) a differentiable function 
[image: image41.wmf](,),

Ftx

 for which identities (3) are true, is defined at each point 
[image: image42.wmf](,()),[0;).

txtt

l

Î

 Then this solution 
[image: image43.wmf])

(

t

x

 can be extended on the interval 
[image: image44.wmf])

;

(

l

l

-

 and 
[image: image45.wmf]))

(

,

(

)

(

t

x

t

F

t

x

-

-

=

 for 
[image: image46.wmf](;0).

t

l

Î-


Lemma 1. (Basic lemma). Let right-hand side of (1) to be 
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From this lemma we get immediately 

Proposition. Let the right-hand side 
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Then every extendable on 
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It follows from the basic lemma, that knowing RF of (1) we can know the in-period 
[image: image62.wmf]]

;

[

w

w

 transformation of (1) and therefore evaluate initial data of 
[image: image63.wmf]w

2

 -periodic solutions of (1) and investigate a kind of stability of each periodic solution of (1). A system (1) can have an elementary RF even if the system is not integrable by quadratures. To see this we consider any non-integrable by quadratures system (1) for which 
[image: image64.wmf]0

)

,

0

(

º

x

X

 and construct system 

[image: image65.wmf]î

í

ì

<

-

-

³

=

.

0

)

,

(

,

0

)

,

(

t

for

x

t

X

t

for

x

t

X

x

&


with odd right-hand side and RF 
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In some aspects PF of (1) resembles an integrating factor. It is the solution of one partial differential system and it gives us an opportunity to find out the in-period transformation (Poincare`s mapping) of the system (1) but not solutions of (1).
The following statements are true:

Theorem 1. Let all solutions of system (1) are 
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Lemma 2. For every continuously differentiable function 
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Theorem 4. For every two times continuously differentiable function 
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Theorem 5. Let all conditions of theorem 4 are satisfied. Then for all 
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with reflecting function 
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Corollary. Function 
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Any system (4) we call simple system. Any system (5) we call the simplest system.
Two systems of the type (1) we call equivalent in 
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Then the set 
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are equivalent if and only if the system
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has a solution for systems (1) and (6) to be equivalent is.
Necessary condition is the identity 
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 The Frobenius theorem helps us to solve the problem of equivalence of two systems. When System (6) is integrable in finite terms  or in quadratures this problem can be easily solved also.
Theorem 6. Let systems (1) and (6) are equivalent and their solutions, which are defined at 
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Theorem 7. Every system (6), which is equivalent to the system (1) can be written in the form 
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Theorem 8. If the system (1) is equivalent to an autonomous system, then this autonomous system is unique and it is the system 
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If, in addition, the system 
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This theorem allows us to detect the simplest systems. Suppose that we want to know is the system (1) the simplest one or not. For this reason we write down the non-differential system
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 If such solution does not exist, then (1) is not the simplest one. If such solution exists and satisfies basic relation then (1) is the simplest system.
To study existence and stability of periodic solutions of a system and solution-existence of boundary-value problems for the system we can replace this system by its equivalent. Replacement the system (1) by the simplest its equivalent system is equal in strength to the determination (finding) of RF of the system (1). Theorem 8 demonstrates us that we can construct sometimes an equivalent system to the given system (1) even if we do not know the RF in the case of (1). In the class of equivalence, which contains an autonomous system, we can take this autonomous system. In other classis the role of such autonomous system is playing the simple system 
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Now we formulate some statements about a simple system, which help us to recognize simple systems among others.

Lemma 3. A system (1) is a simple system if and only if for its RF the relation 
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Theorem 10. For any simple system with 
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are true.

Theorem 11. For every simple equation 
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Theorem 12. A system 
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For any linear system
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Matrix 
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 A non linear system (1) can have linear RF. In this case the RF of (1) is the RF of linear system
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This statement allows us to know whether the given system (1) has linear RF or nonlinear and in case the system (1) is nonlinear and have linear RF to obtain this linear RF. 
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The reader of the [1] has opportunity to know this.

The method of RF we can combine with others methods and to obtain new results. The next theorem we get when we combine the method of RF with the small parameter method.
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the ‘center-focus’ problem is arising.
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The system (1) has a center at 
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 This system can be successfully integrated and this give us an opportunity to obtain the new method to the method of Lypunov for resolving the ‘center-focus’ problem. 
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